Dominator ...

\[M \text{ dom } N \]

\[M \text{ sdom } N \text{ strict} \]

\[M \text{ idom } N \text{ immediate} \]

iff \[M \] is on all paths from START to \(N \)

iff \[M \text{ dom } N \text{ and } M \neq N \]

iff \[M \text{ sdom } N \text{ and} \]

\((P \text{ sdom } N) \implies (P \text{ dom } M)\)

Proof: assume \(M_1, M_2 \) \(M_1 \text{ dom } N, M_2 \text{ dom } N \) two immediate dominators?

\(M_1, M_2, \ldots, M_k \) must appear on all paths
P can be made acyclic.

Node, H_j dom N must appear on acyclic path.

So, H_1, H_2, \ldots, H_k will appear in some order.

Last node H_j (on path).

Node that precedes N.

H_j would be immediate dominator.

But H_i is also immediate dominator $\text{dom}(H_i \neq H_j)$.

Go directly $H_i \rightarrow N$, excludes H_j.

\[A \quad B \quad C \quad D \quad E \quad F \quad E \quad F \]
\[\text{dom}(N) = \{ N \} \cup \left(\bigcup_{M \text{ predecessor of } N} \text{dom}(M) \right) \]

\[\text{Dom In } (\text{START}) = \emptyset \]

\[\text{Dom In } (b) = \bigcap_{c \text{ predecessor of } (b)} \text{Dom Out } (c) \]

\[\text{Dom Out } (b) = \text{Dom In } (b) \cup \{ b \} \]
How should we initialize $\text{DomOut}(x)$, $x \neq \text{Start node}$?

Proposition 1: $\text{DomOut}(x) = \emptyset$

Consider the loop

\[
\text{START} \quad \downarrow \quad A \quad \downarrow \quad B \quad \downarrow \quad C
\]

\[
\text{dom}(B) = \text{domOut}(B \cup \{B\}) = \{B\} \cup \text{DomOut}(B)
\]

If we start iteration with $\text{DomOut}(B) = \emptyset$

\[
\text{domOut}(B) = \{B\}
\]
2 options:

a) Initial out set differently

\[\text{init } \text{dom out}(x) = \{ x \} \]

set of all nodes

\(x \neq \text{START} \)

\[\text{dom out}(B) = \{ B \} \cup \text{dom out}(A) \]

b) order computation and exclude nodes that have not had dom out computed from \(\cap \) of predecessors dom M

...
For option a)
algorithm based on worklist

For (each n ∈ NodeSet)
I: set it all nodes
 dom (n) = NodeSet;

worklist = { START }

dom (START) = Ø;

while (worklist ≠ Ø) {
 pick y from worklist, remove y;
 New = 2y3 U (∪ dom (x))
 x ∈ pred (y)
 if (New ≠ dom (y)) {
 dom (y) = New;
 for (each z ∈ succ (y)) {
 worklist = worklist U z
 }
 }
}
worklist alg:

$O(N^2)$ ops, N: number of nodes

$O(N \log N + E)$, E: number of edges

$O(N \cdot \alpha(N,E))$

\[\alpha\text{-Ackermann function grows slowly}\]

- Propensity of real programs helps
- Simple CFG allows optimization...
\[
\text{Dom}(B) = \{B\} \cup \left(i\text{Dom}(B) \right) \cup \\
\left(i\text{Dom}(i\text{Dom}(B)) \right) \cup \\
\left(i\text{Dom}(i\text{Dom}(i\text{Dom}(B))) \right) \cup \cdots \\
\cup \{\text{START}\}
\]

Depth - First Spanning Tree

For CFG \(\leq 1000 \) nodes

\(N^2 \quad 3 \times \text{speed} \quad N\log N + E \)
\[DF_{\text{local}}(x) = \{ y \mid y \in \text{succ}(x) \} \]

\[x \not\rightarrow y \]

\[DF_{\text{up}}(z) = \{ y \mid y \in DF(z) \text{ and } \text{idom}(z) \not\rightarrow y \} \]

\[DF(x) = DF_{\text{local}}(x) \cup \bigcup_{z \in \text{children}(x)} DF_{\text{up}}(z) \]
To make computation of \(DF_{\text{local}} \) more efficient,

\[
DF_{\text{local}} (x) = \{ y \mid y \in \text{succ} (x) \text{ and } \text{idom} (y) \neq x \}
\]

Proof:

Given \(y \in \text{succ} (x) \)

\[(x \gg y) \iff (\text{idom} (y) = x)\]

\[\leq^*\]

\[x = \text{idom} (y) : x \neq y, \ x \in \text{sdom} y \]

\[x \gg y\]
"\Rightarrow" assume \(X \) dom \(Y \) and hence some \(V \) if \(X \) that dominates \(Y \).

Can there be a \(V \)?

\(V \) appears on any path from \(\text{START} \) to \(Y \) (that path must include \(X \)).

Edge \(X \rightarrow V \rightarrow Y \) or \(V \rightarrow X \rightarrow Y \).

Either this means \(V \) dom \(X \) is possible iff \(V = X \).

\(V \) is child, so \(V \) dom \(X \) is not possible.

So \(\text{idom}(Y) = \text{idom}(V) = X \).
We remark for any node \(x \) with children \(t \) (child in DT),

\[
\text{DF}_{\text{up}}(z) = \{ y \mid y \in \text{DF}(z) \text{ and } \text{idom}(y) \neq x \}.
\]

Compute DF:
for (each \(x \) in NodeList, bottom-up traversal of DT,)

\[
\text{DF}(x) \leftarrow \emptyset
\]
for (each \(y \in \text{succ}(x) \) \&

// DF local

if (\(\text{idom}(y) \neq x \) \& \(\text{DF}(x) = \text{DF}(x) \cup \{y\} \))

}
\[\text{for (each } t \in \text{children}(x)) \{\]
\[\quad \text{DFup}\]
\[\quad \text{for (each } y \in \text{DF}(t)) \{\]
\[\quad \quad \text{if } (\text{idom}(y) \neq x) \{\]
\[\quad \quad \quad \text{DF}(x) = \text{DF}(x) \cup \{y\}\]
\[\quad \quad \}\]
\[\quad \}\]
\[\}\]