6.0 Partial Redundancy Elimination (PRE)

6.1 Introduction

\[a_0 = \ldots \]
\[b_2 = \ldots \]

\[B_0 \]

\[B_1 \]

\[x_3 = (x_0, x_1) \]

\[B_3 \]

\[E_1 : a_1 + b_2 \]

\[E_2 : a_1 + b_2 \]

\[a_0 + b_2 \] is not a common subexpression
Inserting a copy of \(a \times b_2 \) into the pair \(B_0 - B_1 - B_2 \) allows us to recognize \(a \times b_2 \) in \(B_3 \) as a common sub-expression.

\(\leq \) candidate for optimization.

An expression \(E \) that is evaluated along all paths to some block \(B \) is called fully redundant. (in \(B \))

(\(E \) must have same operands \& operators on all paths)

An expression \(E \) that is evaluated along some path(s) to some block \(B \) is called partially redundant.

Idea: insert copies so that \(E \) goes from partially redundant \(\rightarrow \) fully redundant.
PRE using SSA (SSAPRE)

• by adding operations or expected optimization (remove some cycles)

• common subexpression elimination (CSE, shown to be beneficial in many cases) - fully redundant expression elimination is a special case of PRE

• potential of big payoff, not many changes to compile infrastructure

We try to make partially redundant expressions fully redundant - by inserting copies
2 questions for the compiler

when? can an expression be inserted
- proper use of the expression

when? should a copy be inserted
- blocks where in the block

Starting point: compiler identifies expression that are (at least partially) available at some block B

there exist at least one path that computes expression

We use cost function & constraints to select insertion points.
6.2 SSA and expressions

We introduce versions for expression E_i:
- $a \Theta_1$ may be $a_{1} + b_{2} \sim a_{3} + b_{5} \rightarrow$ different expression E_2

...to argue/reason about availability of expressions.

We introduce a Φ function (uppercase Φ) for expressions to deal with different versions of expressions.

\bot ("bottom") - special symbol to indicate that there is no version (of some expression E) computed along a path.
simple example

\[a, = \]
\[b, = \]

\[E_1 = a_1 + b_2 \]
\[x_1 = E_1 \]

\[E_2 = \Phi (x_0, E_1) \]
\[x_2 = \Phi (x_0, x_1) \]
\[z_2 = E_2 \]
Before SSA can be done in five steps
- assume SSA for scalars

1) Insert \(\Phi \) nodes
 - record places where different versions of expressions come together

2) Insert version numbers for expressions
 - either on left-hand side of \(\Phi \) node
 - or at an assignment stmt

3) Identify places when it is legal to insert a copy of some expression \(E \)

4) Find place(s) where insertion of a copy of \(E \) is profitable

5) Transform the program based on (what we now) fully redundant expressions.
6.3 Insertion of Φ nodes

- given a CFG for a program, dominator tree, dominator frontier, Φ nodes for scalars are inserted, version numbers identified (SSA)

Consider an expression $E = a + b$ in some block B.

We must insert a Φ node (somewhere) if

- E is computed explicitly
- if "$a" or "$b" change in B
If expression \(E \) is computed

\[E = a + b \]

Find \(DF(B) \): \(\{ B_1 \} \)

(Here \(B_1, B_2 \))

Insert a \(I \) node in \(B_1 \)

\[E = \Phi(, ,) \]

\[E = \Phi(, ,) \]

\[B_2 \] [unless there is already an \(I \) node for \(E \) in \(B_i \)]

(This skip covers all explicit computations of expression \(E \) in the program.)
Redefinition of operands

\[E = a_1 + b_2 \]

If a block \(B \) contains a node for an operand of \(E \) (say "a")
then insert a \(\Phi \) node for \(E \) into block \(B \)

\[a_3 = \phi(a_2, a_2) \]
\[E = \Phi(, ,) \]
\[= a_3 + b_2 \]

(we do this for all expressions \(E \) that contain "a" as an operand)
6.4 Produce version numbers for expression E

- If E appears on the left hand side, get a new version number
- Identify operands of I node (operands are versions of E for
 \[E = I(\ldots, \ldots) \])

(Recall: for \(\Phi \) nodes for xdata we used an array of stacks

 \(\text{stack of ints (versions)} \)

 one entry for each scalar)

As expressions involve \(\geq 1 \) operand (here: 2) we need the array of stacks for scalars to identify

 \(\text{correct version of the operands of } E \).

 (need access to versions of all operands of } E)
We use an array of stacks for expressions. Each stack to indicate current version.

> one entry for each expression

Given an expression $E = a + b$ in some block B.

After ϕ node processing, we know versions of "$a" and "$b" used in block B. Say a_i and b_j.

$$E = a_i + b_j$$

If we have seen "$a + b" before then there exists a version of E (say E_k) - E_k on top of stack for E (entry in the array of stacks for expressions)
Question:
Is \(E_u \) the correct version for
\[E = a_i + b_j \]

We process the basic blocks in the CFG in bottom-up order of the dominator tree (like we did for processing \(\Phi \) nodes).

For \(E = a + b \):
- Stack in array of stacks for scolars.
- if (TOP(\(\text{stack-}a \)) = i) and (TOP(\(\text{stack-}b \)) = j) and (TOP(\(\text{stack-}E \)) = k)

 then we can use version \(E_u \) of \(E \) and

 link occurrence of "atb" to \(E_k \)
If E_k does not use a_i (or does not use b_i) then compiler must create a new version of E (say E_{k+1})

$$E_{(k+1)} = a_1 + b_1$$
To identify correct version of \(\Phi \) nodes consider predecessor blocks

\[
E = \Phi (\ldots, \ldots)
\]

check \(x \times (y) \) for a version of \(E \) or \(\forall \) \(x \neq y \)

use \(E_2 \) as first operand for \(\Phi \) inside.

If there is no version (there is no comparable at \(E \))

use \(\bot \) (bottom) as operand in \(\Phi \) node