263-2810: Advanced Compiler Design

2.0 Static Single Assignment Form

Thomas R. Gross

Computer Science Department
ETH Zurich, Switzerland
2.0 Static Single Assignment IR

- SSA: Static single assignment
- There is one assignment statement that writes a variable/field/memory location
 - Assignment for short: statement, expression,
 - Static: in the source/IR
 - Single: each statement writes a different variable

- SSA makes data dependences *explicit*
Example

\[x_1 = a_0 + b_0 \]
\[d_1 = x_1 + 1 \]
\[b_1 = a_0 + c_0 \]
Example

\[x_1 = a_0 + b_0 \]
\[d_1 = x_1 + 1 \]
\[b_1 = a_0 + c_0 \]

- **Statement 1 produces a value for statement 2**
- **Only true dependences recorded**
 - No constraints due to variable *names*
Outline

SSA form is used in many production compilers

- SSA form for straight line code
 - How to turn a (JavaLi/C/Java/...) program into SSA form
- Conditional statements
- Benefits of SSA form
- SSA for well-structured programs
 - Only selected subset of control flow constructs allowed
 - “goto”-free programs
 - C – longjmp & friends
- 3.0 SSA for arbitrary programs
2.1 SSA for a basic block

- **Assumption:** Program(method) translated into basic blocks, forest of IR trees for each basic block
 - E.g., AST or similar IR
 - All sources and destinations of operations visible
 - Program written without consideration of SSA format

- **Goal:** transform one basic block into SSA format

- **Simplification**
 - Only method-local scalar variables matter
 - Arrays & fields handled later

- **Approach:** consider all statements (IR trees) in sequence
For each variable X: Counter C_X
 - C_X initialized to 0 at start of method

C_X indicates the “current” version

Given a statement or expression

$$D = S \otimes T \text{ or } S \otimes T$$

1. **Lookup C_S and C_T**
 1. Yields current version, say S_n and T_m

2. **Increment C_D**
 1. Yields new version (D_k)

3. **Replace S, T, D**
 $$D_k = S_n \otimes T_m \text{ or } S_n \otimes T_m$$
- Each basic block can be handled that way
- Only the variable names are changed
 - Otherwise use trees as before
 - Could use any other IR

- Need right value for counters C_x at the start of a basic block
2.2 Conditional statements

- Simple example

  ```
  a = 1;
  if (b ≠ 0) {
    a = 0;
  }
  x = a;
  ```

Counters

- \(C_a = \)
- \(C_b = \)
- \(C_x = \)
2.2 Conditional statements

- Simple example

```java
a = 1;
if (b ≠ 0) {
a = 0;
}
x = a;
```

Counters

- $C_a = $
- $C_b = $
- $C_x = $
Finding the current version

- Simple example

```plaintext
a = 1;
if (b \neq 0) {
    a = 0;
}
x = a;
```

```plaintext
a_1 = 1;
if (b_0 \neq 0) {
    a_2 = 0;
}
x_1 = a_\ldots;
```

Can’t use \(a_1 \)
Can’t use \(a_2 \)
Solution: ϕ function

- Introduce a “magic” function ϕ
- ϕ function delivers the correct version
 - (in the example)
 - If $b_0 = 0$: returns a_1
 - If $b_0 \neq 0$: returns a_2
- We discuss later how to implement the ϕ function efficiently

- The function picks the correct version depending on the path taken to reach BB2
 - More precisely: the point where we need to use either a_1 or a_2
ϕ function

- **Result (return value) depends on path taken**
 - Result value assigned to a new version of variable

- **Arguments are possible return values**
 - Different versions of the same (conceptually) variable

\[
a_1 = 1; \\
\text{if } (b_0 \neq 0) \{ \\
\quad a_2 = 0; \\
\} \\
a_3 = \phi(a_2, a_1) \\
x_1 = a_3; \\
\]
Paths

\[a_1 = 1; \]
\[\text{if } (b_0 \neq 0) \{ \]
\[\quad a_2 = 0; \]
\[\} \]
\[a_3 = \phi(a_2, a_1) \]
\[x_1 = a_3; \]
\(\phi \) function -- Notes

- \(\phi \) function appears only on the right hand side of an assignment
- \(\phi \) function placed at beginning of basic block
 - Not mandatory but simplifies reading examples
- How many arguments should the \(\phi \) function have?
if-then

Case, Switch

\(N \) predecessors. \(n \) arguments

\[x_{new} = \phi(x_1, x_2, \ldots, x_n) \]
\(\phi \) function -- Notes

- \(\phi \) function appears only on the right hand side of an assignment

- \(\phi \) function placed at beginning of basic block
 - Not mandatory but simplifies reading examples

- How many arguments should the \(\phi \) function have?
 - Depends on the number of predecessor nodes in the control flow graph
 - Depends on programming language constructs/program
φ function -- Notes

- φ function does not evaluate *all* arguments
 - Only the single argument that is returned is evaluated
 - Why does this matter?
 - Precise and fine-grained information
φ function -- Notes

- φ function reads arguments in predecessor basic block

```plaintext
if (b_0 ≠ 0) {
  a_2 = 0;  \text{ BB1}
}
else {
  a_1 = 1;  \text{ BB2}
}

a_3 = φ(a_2, a_1)  \text{ BB2}
```
φ function -- Notes

- φ function reads arguments in predecessor basic block

```plaintext
if (b_0 \neq 0) {
  a_2 = 0;
} else {
  a_1 = 1;
}
a_3 = \phi(a_2, a_1)
```
- a2 is read (and therefore live) at the end of BB1
- a1 is read (and therefore live) at the end of BB2
- Neither a1 nor a2 is read (live) in BB3
 - No need to find register
 - Only a3 a candidate for register allocation
Converting to SSA

- Given a CFG with START node, forest of IR trees or AST
- Start with START node
 - Convert the operations in this basic block
- Insert ϕ functions as needed
 - More on this later
- Process next basic block until all blocks have been processed
2.3 Benefits of SSA form

1. Some optimizations are easy resp. obvious
2. Efficient representation of dependences
SSA-based optimizations

- Elimination of common subexpressions (CSE)
- The evaluation of an expression \(a + b \) at point \(P \) can be eliminated if \(a + b \) is evaluated on all paths leading to \(P \)
 - Must consider all paths
 - There cannot be an assignment to \(a \) or \(b \) along any paths after \(a+b \) has been evaluated
SSA-based optimizations

- Elimination of common subexpressions (CSE)
 - First step: identify common subexpressions
CSE

- Must consider complete program
 - "All paths"
 - "No assignments to operands ..."
SSA-based optimizations

- SSA form immediately provides the answer

\[t = a_i + b_j ; \]

\[v = a_m + b_n ; \]

If \(m=i \) and \(n=j \) the expression “\(a+b \)” is the same

- Candidate for removal
Example

\[
= a + b;
\]

```c
if ( ... ) {
    x = 0;
}
```

\[
= a + b;
\]
Example

\[a_i + b_j; \]

\[
\text{if (...) } \{
 x_2 = 0;
\}
\]

\[a_i + b_j; \]
Example

\[a_i + b_j; \]

\[= a_i + b_j; \]

if (\ldots) {
 x_2 = 0;
}

\[= a + b; \]

\[= a + b; \]

if (\ldots) {
 a = 0;
}

\[= a + b; \]

\[= a + b; \]
Example

\[= a_i + b_j; \]

if (\ldots) {
 x_2 = 0;
}

\[= a_i + b_j; \]

\[a_m = \phi(a_k, a_i) \]
\[= a_m + b_j; \]
Use-Def (ud) chains

- Given a “use” of a variable, would like to know where the value was written (“defined”)
 - Useful to identify register allocation candidates
- SSA form makes it easy – there is one definition for each variable
 - Easily maintained mapping
Def-Use (du) chains

- For a given definition, find all uses of the value computed
- SSA form makes it easy: can easily identify uses
 - No extra work needed

\[a_i = \ldots \]
\[= a_i + \ldots \]
\[= a_i + \]

\[a_k = \ldots \]
\[= a_k \]
\[= a_i + \ldots \]
SSA efficient representation

- Consider ud-chains and du-chains
- Storage space for links directly proportional to the number of uses
SSA efficient representation

- Global dataflow equations are solved by iteration
- Use a bit vector to represent
 - Variables
 - Definitions
 - Expressions ...
Available Expressions: Finding IN(B) and OUT(B)

- gen_B and kill_B capture what happens inside a basic block
 - Sets of expressions "generated" and "killed"!

- We need IN and OUT for each basic block
 - $\text{IN}(B) = \bigcap_{B_i, B_i \text{ is predecessor of } B \text{ in CFG}} \text{OUT}(B_i)$
 - $\text{OUT}(B) = \text{gen}_B \cup (\text{IN}(B) - \text{kill}_B)$

- N basic blocks, $2 \times N$ sets IN / OUT
Finding IN(B) and OUT(B)

- N basic blocks, 2×N sets IN / OUT
- System with 2×N unknowns
 - Solve by iterating until a fixed point is found

- How to start iteration?

 Safe assumption OUT[START] = ∅
Finding IN(B) and OUT(B)

- Safe assumption \(\text{OUT}[\text{START}] = \emptyset \)
- What about \(\text{OUT}[\text{Bi}] \) for \(\text{Bi} \neq \text{START} \)?
 - For reaching definitions, we wanted smallest set of definitions that “reach”
 - OK if we say d reaches but it does not
 - For available expressions, we want largest set of expressions that “reach”
 - OK if expr is available but not included in set
- So start with a large approximation and remove expressions that are clearly not available
 - \(\text{OUT}[\text{Bi}] = \mathcal{U} \)
 - \(\mathcal{U} \) is the set of all expressions that appear in the program
Finding available expressions

\[\text{OUT}[\text{START}] = \emptyset \]

Initialize \(\text{OUT}[B] = \cup \) for \(\forall \ B \neq \text{START} \)

while (changes to any \(\text{OUT}(B) \)) {
 for (each basic block \(B \neq \text{START} \)) {
 \[\text{IN}(B) = \bigcap_{B_i, B_i \text{ is predecessor of } B \text{ in } \text{CFG}} \text{OUT}(B_i) \]
 \[\text{OUT}(B) = \text{gen}_B \cup (\text{IN}(B) - \text{kill}_B) \]
 }
}
Comments

- The order of visiting nodes of the control flow graph matters
 - For speed of convergence, not correctness
- Needs sets to hold all expressions that appear in function/method
 - Possibly large
 - Bit vector representation allows fast implementation of set operations
 - Need multi-word set representation
 - Compiler may limit size of bit vector
 - Not all instructions will be considered
SSA efficient representation

- Common subexpressions identified easily
- Cost of representation reduced *in practice*
2.4 SSA for well-structured programs

- Well-structured programs contain only “nice” control flow constructs
 - Programming language enforces property that program is well-structured

- Syntax-directed translation to SSA format
 - Insert ϕ functions
 - We say “insert ϕ node” – a tree node with the ϕ function
 - Rename variables
 - Use correct version~
Preparation

- Augment symbol table to record for each variable
 - Current version (integer)
 - Next version (integer)
 - We sometimes use the term “version number”
Syntax-directed translation

Given a CFG

Process program starting with START node

1. Handle straight-line code (basic blocks)
2. Handle conditional statements (if-then, if-then-else)
3. Handle loops
2.4.1 Straight-line code

- Process block from first statement (first IR node) to last statement, in source program order

- One statement S at a time:
 - Consider the right-hand-side (assume no side effects)
 - For a variable V on the RHS, use the current version
 - Found in symbol table
 - Rewrite RHS
 - Consider the left-hand-side (effect of the statement)
 - For variable D, use next version
 - Update symbol table, increment “next” version

- Same applies to expression E
 - No need to deal with “left-hand-side” unless there are side effects

- V, D must be scalar method-local variables
 - Others unchanged
S1: \(x_1 = 6 \);
S2: \(y_1 = x_5 \);
S3: \(x_2 = 9 \);
S4: \(z_1 = y_1 \);
S5: \(y_2 = z_1 \);

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Init</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(y)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(z)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>