263-2810: Advanced Compiler Design

3.0 SSA form for arbitrary control flow graphs

Thomas R. Gross

Computer Science Department
ETH Zurich, Switzerland
SSA format

- φ functions allows us to deal with a basic block that has multiple predecessors

- To turn a program into SSA format
 - Insert φ nodes
 - Determine version to be used as operand
 - Produce new versions when there is an assignment
 - Or a φ function delivers the correct version

- So far: syntactic approach
 - Works for well-structured programs
 - Next: an approach for general control flow graphs
 - But first: review of concepts for graphs
Outline

- 3.1 Graphs
- 3.2 Approaches to insertion of φ nodes
- 3.3 Dominance frontier
- 3.4 Algorithm for insertion of φ nodes
- 3.5 Algorithm for variable renaming
- 3.6 Example
3.1 Graphs

- **Control flow graph: central data structure**
 - Nodes: basic blocks (or sequences of straight-line programs)
 - Edges: directed, *possible control flow*

- **Special nodes**
 - ENTRY: special without predecessor
 - EXIT: special without successor

- Edge from ENTRY to EXIT
Dominance

- Given a CFG. A node A (or basic block A) dominates node B (basic block B) if A is on every path from ENTRY to B.

A \textit{dom} B

A \textit{dom} A

X \sim \textit{dom} Y : X does not dominate Y
Example 1

ENTRY

BB0

BB1

BB2

BB3

BB0 dom BB1 dom BB2 dom BB2

BB0 dom BB1

BB0 dom BB2

BB0 dom BB3

BB1 dom BB1
Example 2

ENTRY

A

B

C

D

EXIT
Immediate dominator

- $A \text{idom} B$
 - $A \text{dom} B$
 - $\exists X$ such that $A \text{dom} X$ and $X \text{dom} B$ ($X \neq A, X \neq B$)

ENTRY A idom A

A idom B

B idom C

B idom D

ABCBD, OK

A idom D2

No

ABD

ABD, last idom

A-B-D A-C-D
Example 2

ENTRY

A

B

C

D

EXIT

ENTRY idom A
A idom B
B idom C
B idom D

ABCBD

OK

A idom D

A

B

C

D

A idom D

A idom D

A

B

C

D

A idom D

A

B

C

D

A idom D

A-B-D

A-C-D

A-B-D

A-C-D

A-B-D

A-C-D
Dominator tree

- The dominator tree (DT) captures the *immediate dominator* relationship
 - X idom Y: edge $X \rightarrow Y$ in DT

- There is exactly one immediate dominator
 - That’s why it’s a tree ...
 - Last dominator on any path from ENTRY
Terminology

- **Control flow graph**
 - predecessor
 - successor
 - direct (predecessor/successor): There is an edge --- indicates possible control transfer

- **Example**
 - B direct successor of A
 - C direct successor of B
 - A direct predecessor of B
 - D successor of A
 - A predecessor of C
 - C *possible* predecessor of B

 ENTRY → A → B → C → B vs ENTRY → A → B → D → EXIT
Terminology 2

- **Dominator tree**
 - child
 - parent
 - ancestor: parent, grandparent, great-grandparent,...
 - descendant: child, grandchild, great-grandchild, ...

- **Example**
 - A parent of B
 - B child of A
 - C child of B

- No statement about actual control flow
- ENTRY → A → B → D → EXIT
Dominator relationship

- *dom* reflexive
 - $X \text{ dom } X$

- Sometimes we want an *irreflexive (anti-reflexive)* relationship
 - Want to be sure that $A \text{ dom } B$ implies $A \neq B$

- X strictly dominates Y: $X \text{ dom } Y$ and $X \neq Y$
 - $X \gg Y$

- Distinguish from (weak) domination: $X \text{ dom } Y$
 - $X \gg Y$
Computing dominator relationship

data flow equation

\[\text{DOM}(\text{ENTRY}) = \{\text{ENTRY}\} \]

set of dominating nodes

\[\text{DOM}(N) = \bigcup_{\text{predecessor P_i of N}} \text{DOM}(P_i) \]

initialization

\[\text{DOM}(\text{ENTRY}) = \{\text{ENTRY}\} \]

\[\text{DOM}(N) = \bigcup_{N \neq \text{ENTRY}} \text{DOM}(N) \]

iterate until no more change

for all nodes Q, Q \neq \text{ENTRY}

\[\text{DOM}(Q) = \{Q\} \cup \bigcup_{P_i \text{ P_i predecessor of N}} \text{DOM}(P_i) \]
3.2 Insertion of ϕ nodes

- Where could we insert ϕ nodes?
- Where should we insert ϕ nodes?
Example graph
- Program not well-structured

- Insert ϕ nodes – Option A:
 - Insert a ϕ node into the block that uses a variable
 - Example: x is used in basic block BB6
Example graph

ENTRY

EXIT

\[X = \phi(x, y, z) \]

BB6

= X
Insert ϕ nodes – Option B:

- Insert a ϕ node as early as possible
- Even if there is no use of a variable in basic block
- Example: nodes in BB3, BB5, and BB6
Example graph

\[
ENTRY \quad x = \phi(x) \\
\quad x = \phi(x) \quad BB3 \\
\quad x = \phi(x) \quad BB5 \\
\quad x = \phi(x) \quad = x \quad BB6 \\
EXIT
\]
Option B: Number of arguments to ϕ function directly depends on the number of predecessors in CFG

- Fixed for a given programming language resp. implementation
- case/switch statement may result in unlimited number of predecessors unless compiled into cascading set of if-statements

Option A: Number of arguments to ϕ function depends on number of paths that reach a given point

- Unbounded

Option B preferred by compiler designers
Setup

- Let us assume there is an initial (dedicated) assignment to each variable
 - For X, Y, Z,... we have X_0, Y_0, Z_0, ...
 - “Placed” into the ENTRY node
 - “pseudo-assignment”

- Benefits
 - There is at least one assignment on every path
 - If the RHS of an assignment or expression reads X_0 there is possibly a use of an uninitialized variable
CFG nodes with ϕ functions

- Consider two nodes A, B
- A defines X, B uses X
- No function is needed along path from A to B if $A \gg B$
- But $A = B$ is possible. Need to deal with

- Extend definition of dominance from basic blocks (nodes of CFG) to operations in basic block
 - definitions
 - uses
- Definition (def) d_i in block A
- Use (use) u_j in block B
 \[d_i \implies u_j \]
- iff d_i is in block A, u_j is in block B, and d_i is the last definition along a path from A to B (i.e., from d_i to u_j)
- Can define $d \implies u_j$ as well
\(\neg (d_i \gg u_j)\)

- \(\neg (d_i \gg u_j)\): \(d_i\) does not dominate \(u_j\)

- \(\exists\) at least one path from \(\text{ENTRY}\) to \(u_j\) that does not include \(d_i\) (as the last definition of \(X\))
Detailed look

- No ϕ function if $d \gg u$
- ϕ function if no dominance
The diagram illustrates a network with nodes labeled as follows:

- Node d_1 dominates node d_2.
- Node d_2 dominates node d_3.
- Node d_1 dominates node n_1.
- Node d_2 dominates node n_2.
- Node d_3 dominates node n_3.

The text below the diagram reads:

- Good places for markers at node n_1.
- Set dominated by d_1, d_2, d_3.

The diagram also includes arrows indicating dominance relationships between nodes.
Placement of ϕ functions

- Look for nodes n_1, n_2, ... that have these properties
 - n_1, n_2, are not dominated by definitions d_1, d_2, d_3, ...
 - predecessors of n_1, n_2, ... are dominated
 - n_1, n_2, ... on a path from d_1, d_2, ... to u

- These nodes form the *dominance frontier*

- Note: u may be n_1, n_2, ...