263-2810: Advanced Compiler Design

3.3 Dominance frontier

Thomas R. Gross

Computer Science Department
ETH Zurich, Switzerland
Outline

- 3.1 Graphs
- 3.2 Approaches to insertion of ϕ nodes
- 3.3 Dominance frontier
- 3.4 Algorithm for insertion of ϕ nodes
- 3.5 Algorithm for variable renaming
- 3.6 Example
\[DF(Q) = \{ N \mid \exists \text{ path from } Q \text{ to } N, \]

\[\neg(Q \gg N),\]

\[\exists \text{ predecessor } P \text{ of } N \text{ s.t. } Q \gg P \}\]
\[\text{DF}_{\text{UP}}(Y) \]

- A node \(N \in \text{DF(child)} \) is \(\in \text{DF(parent)} \) if \(\neg (\text{parent} \gg N) \)
- \(\text{DF}(Y) = \{ Z_1, Z_2 \}, \text{DF}(X) = \{ Z_1 \} \)

\[\text{DF}_{\text{UP}}(Y) = \{ N \mid N \in \text{DF}(Y) \text{ and } \neg (\text{Parent}(Y) \gg N) \} \]
- \(\text{Parent}(Y) = \text{idom}(Y) \)
Computing $DF(X)$

- $DF(Y) = \{ Z_1, Z_2 \}$
- $DF_{UP}(Y) = \{ Z_1, Z_2 \}$
- $DF(Y) = \{ Z_1, Z_2 \}$
- $DF_{UP}(Y) = \{ Z_1 \}$
$DF_{\text{Local}}(X)$

- $DF_{\text{Local}}(X)$ is the set of nodes N that are direct successors of X but not descendants

- $DF_{\text{Local}}(Y) = \{ Z_1, Z_2 \}$

- $DF_{\text{Local}}(X) = \{ Z_3 \}$
Only direct successors contribute to $DF_{\text{Local}}(X)$

- Descendants D_i (that are children) contribute through $DF_{UP}(D_i)$
Incremental computation of DF(X)

- \(\text{DF} (X) = \text{DF}_{\text{Local}}(X) \cup \bigcup \text{DF}_{\text{UP}}(Y_i) \text{ with } Y_i \text{ child of } X \)

- \(\text{DF}_{\text{Local}}(X) \) : Set of nodes in DF(X) determined by (CFG) successors

- \(\text{DF}_{\text{UP}}(Y) \) : Set of nodes in DF(X) contributed by children Y of X
- Efficient computation
- Compute $DF_{\text{Local}}(X)$: inspect all direct CFG successors
 - Usually a small number
- Assume $DF(Y)$ has been computed for all children Y_i of X
- Get $DF_{\text{up}}(Y_i)$: all nodes $N \subseteq DF(Y_i)$ with $\neg (X \gg N)$
Computing $DF_{\text{Local}}(X)$

$DF_{\text{Local}}(X) = \{ N \mid N \text{ is a direct successor of } X,$
\[\neg (X \triangleright N) \]
\[\exists N' \text{ s. t. } X \triangleright N' \text{ and } N' \text{ predecessor of } N \}$

- Really easy if X is a leaf node of the DT
 - No children in dominator tree \implies only direct successors must be inspected
DF for leafs

- $\text{DF} (X) = \text{DF}_{\text{Local}}(X) \cup \left(\bigcup (\text{DF}_{\text{UP}}(Y_i) \text{ with } Y_i \text{ child of } X) \right)$
- Leaf nodes have no children
- X leaf node: $\text{DF} (X) = \text{DF}_{\text{Local}}(X)$
3.3.3 Putting DF_{Local} and DF_{UP} together

- $DF(X) = DF_{Local}(X) \cup \bigcup (DF_{UP}(Y_i) \text{ with } Y_i \text{ child of } X)$

- Must combine DF_{Local} and DF_{UP} of children
Visit nodes N in a bottom-up traversal of the DT
for each node N {
 DF(N) = Ø
 for each node X, X successor of N {
 if (idom(X) ≠ N) { DF(N) = DF(N) ∪ { X } }
 }
 for each node Z, Z child of N {
 for each Y ∈ DF(Z) {
 if (idom(Y) ≠ N) { DF(N) = DF(N) ∪ { Y } }
 }
 }
}
3.3.4 Example

\[D^F(4) = \{ 8 \} \]
\[D^f(5) = \{ 8 \} \]
\[D^f(6) = \{ 10 \} \]
\[D^f(7) = \emptyset \]
\[D^f(9) = \emptyset \]
\[D^f(2) = \emptyset \]
\[D^F(2) = \{ 10 \} \]
\[D^F(5) = \{ 8, 9 \} \]

\[D^f(3) = \{ 7, 9 \} \]

\[D^f(10) = \emptyset \]

Entry: \(\{ 8, 7, 8, 3, 7, 6, 3, 10 \} \)

Exit: \(\{ 2, 3, 10, 4, 5, 8, 6, 7, 9 \} \)
Example 2
3.4 Algorithm for insertion of ϕ nodes

- Given a CFG, DF for all nodes (blocks)
- **For each variable** V, we need
 - List of all nodes that contain definitions of V
 - (Basic blocks with assignments to V)
 - Call this list ASSIGN(V)
- **Idea:** insert ϕ functions for V for all CFG nodes in ASSIGN(V)
 - Check if inserting a ϕ function (a special assignment, creates new version) requires insertion of additional ϕ functions
- $\text{has}_\phi_\text{fct}(X)$: true for a block X in CFG iff X contains a ϕ function for V
- **worklist** W: set of blocks (nodes) still to be processed
- **added_to_worklist(X)**: true for block X iff has been added to W
Implementation concerns

- Need to keep track where a ϕ function is inserted
- One option: bit vector
 - Length: number of basic blocks (nodes in CFG)
- Drawback: potentially inefficient

- Better idea: use integer (counter) to keep track of processing CFG nodes
 - Record when a ϕ function is inserted
 - $\text{has}_\phi_\text{fct}(X) = C$ with C integer, C iteration when ϕ function is inserted
 - $\text{added}_\text{to}_\text{worklist}(X) = C$ with C integer, C iteration when added to W
int count = 0
for each node X in CFG {
 has____fct(X) = count
 added_to_worklist(X) = count
}
for all variables V {
 count ++
 W = ASSIGN(V)
 for all X ∈ ASSIGN(V) { added_to_worklist(X) = count }
 while (W ≠ ∅) {
 pick B from W, remove B from W
 for all nodes Y ∈ DF(B) {
 if (has_φ_fct(Y) < count) {
 insert φ function into Y
 has_φ_fct(Y) = count
 if (added_to_worklist(Y) < count) { add Y to W, added_to_worklist(Y) = count }
 } // if no φ_fct
 } // for all nodes in DF
 } // while
} // for all variables
Example

ENTRY

a = b =

b =

EXIT

EXIT

ENTRY

a = b =

b =

ENTRY

a = b =

b =

ENTRY

a = b =
Example

ENTRY

0

a =
b =

1

a = φ(,)
b = φ(,)

2

b =

3

b = φ(,)

4

5

a = φ(,)
b = φ(,)

6

7

8

a = φ(,)
b = φ(,)

EXIT
3.5 Renaming variables

- Given a CFG, with ϕ functions inserted
- Given a statement S in block B of the CFG, find version(s) for all variables V
 - on the RHS (or in an expression)
 - on the LHS
 - in a ϕ function
Possible setup

$A = \phi(\ldots)$

$A_1 = \ldots$

$A_2 = \ldots$

B

C

donimated by B

use version set in B

donimated by C

use version set in C
Pick ... version

- Inside region dominated by B
 - Use version assigned in B
 - Unless there is a more recent version
 - Inside region dominated by C
 - and so on

- Process nodes of the CFG in the order defined by DT

- Assume C is processed before A
 - Make sure to use In A version defined in B
 - → restore old set of versions when done with C
 - and its descendent
Stack of versions

- For each variable \(V \): stack of versions

 \[
 \text{stack}[V]
 \]

 Initially empty

- For each variable: counter

 \[
 \text{counter}[V]
 \]

 Initialized to 0
Process (basic block X) {
 for all statements S in X {
 if (S is not a ϕ function) {
 for each variable V in RHS {
 replace V with $V_i = \text{Stack}[V].\text{top}$
 } // RHS
 for each variable V on the LHS {
 $c = \text{counter}[V]$
 $\text{Stack}[V].\text{push}(c)$
 replace V with V_c on the LHS
 $\text{counter}[V] = c + 1$
 } // LHS
 } // for all statements
 } // for all statements
for all successors Y of X {
 for all φ functions F in Y {
 let V be the LHS of F
 let X be the k-th predecessor of Y
 set the k-th argument of F to $V_i = \text{Stack}[V].\text{top}$
 } // for all φ functions
} // for all successors
for all children C of X {
 process (C)
}
for all assignments A in X {
 if V is set by A {
 Stack[V].pop
 }
} // for all assignments
}
} // for all blocks
Example

ENTRY

0

\[a = b = \]

1

\[a = \phi(\text{ }, \text{ }) \]
\[b = \phi(\text{ }, \text{ }) \]

2

\[b = \]

3

\[a = \phi(\text{ }, \text{ }) \]
\[b = \phi(\text{ }, \text{ }) \]

4

\[a = \]

5

\[a = \phi(\text{ }, \text{ }) \]
\[b = \phi(\text{ }, \text{ }) \]

6

\[b = \]

7

\[b = \phi(\text{ }, \text{ }) \]

8

\[b = \phi(\text{ }, \text{ }) \]

9

\[a = \phi(\text{ }, \text{ }) \]
\[b = \phi(\text{ }, \text{ }) \]

EXIT