263-2810: Advanced Compiler Design

3.6 Variable renaming - example

Thomas R. Gross

Computer Science Department
ETH Zurich, Switzerland
Outline

- 3.1 Graphs
- 3.2 Approaches to insertion of ϕ nodes
- 3.3 Dominance frontier
- 3.4 Algorithm for insertion of ϕ nodes
- 3.5 Algorithm for variable renaming
- 3.6 Example
3.5 Algorithm for variable renaming

- Given a CFG, with ϕ functions inserted

- For each variable V: stack of versions

 stack[V]

 Initially empty

- For each variable: counter

 counter[V]

 Initialized to 0
Process (basic block X) {
 for all statements S in X {
 if (S is not a ϕ function) {
 for each variable V in RHS {
 replace V with $V_i = \text{Stack}[V].\text{top}$
 } // RHS
 for each variable V on the LHS {
 $c = \text{counter}[V]$
 $\text{Stack}[V].\text{push}(c)$
 replace V with V_c on the LHS
 $\text{counter}[V] = c + 1$
 } // LHS
 } // for all statements
 } // for all statements
}
for all successors Y of X {
 for all ϕ functions F in Y {
 let V be the LHS of F
 let X be the k-th predecessor of Y
 set the k-th argument of F to $V_i = \text{Stack}[V].\text{top}$
 } // for all ϕ functions
} // for all successors

for all children C of X { process (C) }
for all assignments A in X {
 if V is set by A {
 Stack[V].pop
 }
} // for all assignments

} // for all blocks
3.6 Example

ENTRY

0

a = b =

1

b =

2

b = φ(,)

3

a = φ(,)
b = φ(,)

4

a =

5

b = φ(,)

6

b =

7

b = φ(,)

8

b = φ(,)

9

a = φ(,)
b = φ(,)

EXIT

EXIT
3.6 Example

ENTRY

\[
a_0 = \\
b_0 = \\
\]

EXIT

a_4 = \(\phi(a_0, a_1) \)

b_5 = \(\phi(b_0, b_4) \)

\[
a_0 = \\
b_0 = \\
\]

1

2

3

\[
b_1 = \\
a_1 = \phi(a_0, a_2) \\
b_2 = \phi(b_0, b_3) \\
\]

7

8

\[
b_4 = \phi(b_1, b_2) \\
\]

9

5

6

\[
\]

\[
\]

EXIT

b_3 = \(\phi(b_0, b_3) \)

a_1 = \(\phi(a_0, a_2) \)

b_2 = \(\phi(b_0, b_3) \)

a_4 = \(\phi(a_0, a_1) \)

b_5 = \(\phi(b_0, b_4) \)
3.6 Example

Stack(a) = [] = [0]
Stack(b) = [] = [0]
C(a) = 0
C(b) = 0

process(0)
process(1)
process(2)
process(3)
process(4)
process(5)
process(6)
process(7)
process(8)
process(9)

ENTRY

a_0 =
b_0 =

0

1

b_1 =

2

a_2 = \phi(a_0, a_2)
b_2 = \phi(b_0, b_2)

3

a_3 = \phi(a_0, a_3)
b_3 = \phi(b_0, b_3)

4

b_4 = \phi(b_3, b_4)

5

EXIT

6

7

8

9
Stack = []
Stack = [0]
Stack = [0, 1]
Stack = [0, 1, 2]
Stack = [0, 1, 2, 3]
Stack = [0, 1, 2, 3, 4]

C(a) = 0
C(b) = 0
C(c) = 0

process (0)
process (1)
process (2)
process (3)
process (4)
process (5)
process (6)
process (7)
process (8)
process (9)
4.0 Practical issues

- So far: method-local variables
 - Compiler-generated variables ("temporaries") for address arithmetic

- But real programs contain also other data types
 - Object (instances) & their fields
 - Arrays
4.0 Practical issues

- So far: method-local variables
 - Compiler-generated variables (“temporaries”) for address arithmetic

- But real programs contain also other data types
 - Object (instances) & their fields
 - Arrays

- Next: arrays
4.1 Arrays

- Why are arrays a problem for SSA format?
 - Arrays: start with arrays of int
4.1 Arrays

- Why are arrays a problem for SSA format?
 - Arrays: start with arrays of int

- Assignment to individual array elements

```c
a[1] = ... 
```

```c
int b[50], i, j, k
read(i, j, k)
```

```c
b[i] = ...
    = b[j]
```

```c
b[k] = ...
```
Dealing with arrays

- **Idea:** extend representation to include arrays
 - But limit optimization and analysis to scalars
 - Array representation does not cause damage

- **Two auxiliary functions**
 - `access()`: models the reading of an array element
 - `update()`: models the writing of an array element

- **Functions `access()` and `update()` must be executed in source-order**
 - No change of execution order ("no code movement")
update() and access()

read(i, j, k)

b[i] = ...
 = b[j]
b[k] = ...

update() and access()

read(i, j, k)

\[b[i] = \ldots = b[j] \]

\[b[k] = \ldots \]

read\((i_6, j_2, k_{11})\)

update\((b, i_6, \ldots)\)

\[\ldots = access(b, j_2) \]

update\((b, k_{11}, \ldots)\)
update() and access()

\[
\text{read}(i, j, k) \quad \text{read}(i_6, j_2, k_{11})
\]

\[
\begin{align*}
&b[i] = \ldots \\
&= b[j] \\
&b[k] = \ldots
\end{align*}
\]

\[
\begin{align*}
&\text{update}(b, i_6, \ldots) \\
&\ldots = \text{access}(b, j_2) \\
&\text{update}(b, k_{11}, \ldots)
\end{align*}
\]

These functions allow modification of arrays “in place”

- Efficient implementation is possible
- Can allow change of execution order for different access() functions
- Absence of aliasing allows changing order of access/update for different arrays
4.2 Objects

- Model instance of an object as a “special” array

```java
class X {
    int a;
    int b;
    int c;
}
X xref;
xref.a = ...
    = xref.b
xref.c = ...
```
4.2 Objects

- Model instance of an object as a “special” array

```java
class X {
    int a;
    int b;
    int c;
}
X xref;
xref.a = ...
  = xref.b
xref.c = ...
update(xref.data, 0, ...)
  ...
  = access(xref.data, 1)
  update(xref.data, 2, ...)
```
4.3 Properties of algorithm 3.4 (φ functions)

- The algorithm presented in Section 3.4 inserts the *minimal* number of φ functions.

- Is inserting the *minimal* number of φ functions *optimal*?
Example program (sketch)

```c
if (...) {
  if (...) {
    a = 0
  } else {
    a = 1
  }
}

b = a * f
```

} else {

...
Example program (sketch)

```plaintext
if (...) {
    if (...) {
        a = 0
    } else {
        a = 1
    }
    b = a * f
} else {
    ...
}
```