263-2810: Advanced Compiler Design

6.0 Partial redundancy elimination

Thomas R. Gross

Computer Science Department
ETH Zurich, Switzerland
Example

- Expression $E = a_1 + b_1$ in BB1
- Is E in BB3 a “common sub-expression”?
Example

- Expression $E = a_1 + b_1$ in BB1
- E is *not* a “common sub-expression” BB3.
- **Cannot re-use value of E**
 - E in BB3 may not be available

- **Assume program is executed repeatedly**
 - Often we have profile information from past executions
 - In a Virtual Machine -- may at time T have profile information for time $[0, \ldots T)$
Execution frequency considered

- Expression $E = a_1 + b_1$ in BB1 recomputed again and again
- E is not a “common sub-expression” BB3 but we wish it was
Could save re-computation of $E = a_1 + b_1$ in BB1 if path BB0 – BB2 – BB3 contained computation of E.

- Sometimes we can arrange this to be the case

We say E is *partially available* at BB3

- Inserting a copy of $E = a_1 + b_1$ into path makes E *fully available* (i.e., redundant)
- Fully available expressions can be optimized
- Common sub-expressions are a special case of fully available expressions
Execution frequency considered

- Expression $E = a_1 + b_1$ is now redundant at BB3
 - Copy inserted into BB2
PRE: Partial redundancy elimination

- An expression E is partially available at point P (in a CFG) if E is computed along some path to P.
- An expression E is fully available at point P if E is computed along all paths to P.

PRE: change partially redundant into fully redundant

- PRE: Powerful approach that combines
 - Common sub-expression elimination
 - Code hoisting
 - Loop invariant removal
 - Creation of redundancies
- **PRE idea:** insert *copies* to turn partially available expressions into fully available expressions
 - Then optimize by exploiting redundancy
 - Covers also expressions that were fully available to begin with

- **Good idea but**
 - Are there risks ?
 - Can we insert expressions everywhere? somewhere?
PRE

- Identify places to insert a copy of an expression
 - Source program: \(E = a + b \)
 - Need to distinguish between different versions of source operands \(a_i, b_j \)
 - \(\Rightarrow \) different versions of expressions

- Transformations to exploit redundancy
Expressions

\[a_1 = \ldots \]
\[b_1 = \ldots \]
\[x_0 = a_1 + b_1 \]

\[a_2 = \ldots \]
\[y_1 = a_2 + b_1 \]

\[b_2 = \ldots \]
\[z_1 = a_1 + b_2 \]

\[a_3 = \phi(a_2, a_1) \]
\[b_3 = \phi(b_1, b_2) \]
\[y_2 = \phi(y_1, y_0) \]
\[z_2 = \phi(z_0, z_1) \]
\[t_9 = a_3 + b_3 \]
Expressions

- Expression $E = a + b$
- Different in BB0, BB1, BB2, BB3

\[
\begin{align*}
a_1 &= \ldots \\
b_1 &= \ldots \\
x_0 &= a_1 + b_1
\end{align*}
\]

\[
\begin{align*}
a_2 &= \ldots \\
y_1 &= a_2 + b_1
\end{align*}
\]

\[
\begin{align*}
b_2 &= \ldots \\
z_1 &= a_1 + b_2
\end{align*}
\]

\[
\begin{align*}
a_3 &= \phi(a_2, a_1) \\
b_3 &= \phi(b_1, b_2) \\
y_2 &= \phi(y_1, y_0) \\
z_2 &= \phi(z_0, z_1) \\
t_9 &= a_3 + b_3
\end{align*}
\]
6.1 SSA and expressions

- Distinguish between different expressions E
- Versions for expressions
 - $a+b$ can be $E_1 = a_1 + b_1$, $E_2 = a_2 + b_1$, $E_3 = a_1 + b_2$, or $E_4 = a_3 + b_3$
- Versions allow us to reason about availability of expressions
- Care about expressions defined along a path
 - Need to deal with points where different paths P_1, P_2 merge
 - Define a merge function for expressions: Φ
 - $\Phi : \text{uppercase } \phi$
Φ function

- Φ function is similar to the φ function for scalars
- Consider point P with paths P_1, P_2, \ldots, P_m that end at P
- $E_k = \Phi (E_i, \ldots, E_j)$ at point P
 - m different paths – m arguments
- Returns the version of the expression defined along the path P_q taken to reach P.
Expressions

- Given an expression E and a point P with a Φ function
- Consider the arguments to the Φ function.
- Is (at least some version of) expression E evaluated along each path?
 - For variables, we assumed an initial assignment in START
 - This idea won’t work for expressions
- Need a way to indicate that no version of E is evaluated along a path (i.e., E is not evaluated ever)
 - \perp (bottom): no version of E is evaluated along the path
 - $E_k = \Phi(\perp, E_1, \perp, E_2)$
Expressions

- Given an expression E and a point P with a Φ function
- Consider the arguments to the Φ function.
- Is (at least some version of) expression E evaluated along each path?
 - For variables, we assumed an initial assignment in START
 - This idea won’t work for expressions
- Need a way to indicate that no version of E is evaluated along a path (i.e., E is not evaluated ever)
 - \bot (bottom): no version of E is evaluated along the path
 - $E_k \notin (\bot, E_1, \bot, E_2)$ along this path, E is not eval.
Example

\[a_1 = \ldots \]
\[b_1 = \ldots \]

\[E_1 = a_1 + b_1 \]
\[x_1 = E_1 \]

\[E_2 = \Phi(\bot, E_1) \]
\[x_3 = \phi(x_0, x_1) \]
\[= E_2 \]
6.2 Outline

PRE with SSA in five (easy) steps

- Assumption: Program in SSA form for scalar variables

1. Insert Φ functions for expressions
 - (Introduce “temporary” to isolate expression
 \[x = a_1 + b_1 \rightarrow E = a_1 + b_1 \]
 \[x = E \]
 - Identify places where different versions merge

2. Identify/set version numbers for expressions
 - Expressions on LHS: set version number
 - Operands of functions: find correct version
(5 steps continued)

3. Identify places where it is legal to insert a copy of an expression
 - “legal” is defined later

4. Find places where the insertion on a copy is profitable
 - Only places that are legal can be considered
 - Expect removal of operations
 - Expect reduction in cycles
 - Metrics for profitability to be discussed

5. Exploit full redundancy of expressions
 - Transform program to reuse computed values
Outline

PRE with SSA in five (easy) steps

- Assumption: Program in SSA form for scalar variables

1. Insert Φ functions for expressions
2. Identify/set version numbers for expressions

Similar to SSA for scalars
6.3 Insertion of Φ functions

- Given the CFG of a program.
 - SSA format for scalars needs dominator tree, dominance frontier.
 - Keep for insertion of Φ functions
- Consider an expression $E = a + b$ in some block B.
- Must insert a Φ function *somewhere* if
 - E is computed explicitly *or*
 - One of the operands of E (i.e., a or b) is changed in block B.
Part 1: E computed in B

- Find dominance frontier $DF(B)$
 - Here \{B1, B2\}
- Insert a Φ function (unless already present)
Part 1: E computed in B

- Find dominance frontier DF(B)
 - Here \{B1, B2\}
- Insert a \(\Phi \) function (unless already present)
- This step deals with all explicit computations of E in some block
Part 2: Redefinition of operand(s)

- Consider \(E = a + b \) and \(a \) (or \(b \)) is defined in block \(B' \)
Part 2: Redefinition of operand(s)

- Consider \(E = a + b \) and \(a \) (or \(b \)) is defined in block \(B' \)
 - There must be a \(\phi \) function in nodes in \(DF(B') \)
 - Consider \(B \subseteq DF(B') \)

\[
\begin{align*}
a_1 &= \ldots \\
b_1 &= \ldots \\
E &= a_1 + b_1
\end{align*}
\]

\[
\begin{align*}
a_2 &= \ldots \\
E &= a_1 + b_1
\end{align*}
\]

\[
\begin{align*}
a_3 &= \phi(a_1, a_2) \\
 &= a_3 + b_1
\end{align*}
\]
Part 2: Redefinition of operand(s)

- Insert into $B \ (\in DF(B'))$ a Φ function for all expressions E that contain a as an operand.
6.5 Version numbers for expressions

- If E appears on the LHS: get a new version
- For the operands of a Φ function:
 - Identify correct version

- Recall: for functions (for scalars) we used a stack of versions
 - Array [variable] of stacks
- Use stack for operands of expression E to figure out which version is used
Consider \(\mathcal{E} \), the set of all expressions of interest in the program

- \(\text{stack}[\mathcal{E}] \): one stack for each expression

\(\mathcal{E} \subseteq \mathcal{E} \text{ stack}[\mathcal{E}] : \) stack of versions (integers)

Given an expression \(E = a + b \), after turning program into SSA for scalars, versions of \(a \) and \(b \) are known

- \(E = a_i + b_j \)

If we have processed \(E = a_i + b_j \) before (with these versions of \(a, b \)) then we use the version \(k \) of \(E \) on top of \(\text{stack}[\mathcal{E}] \)

- \(E_k = a_i + b_j \)
- Must be the current version of \(E \)
• So use version \(k \) of \(E \) if
 - \(\text{stack}(a).\text{top} = i \)
 - \(\text{stack}(b).\text{top} = j \)
 - and \(\text{stack}(E) = k \) with \(E_k = a_i + b_j \)

• If \(E = a_i + b_j \) has not been processed before, i.e.,
 - \(\text{stack}(a).\text{top} = i \)
 - \(\text{stack}(b).\text{top} = j \)
 - and \(\text{stack}(E) = k \) with \(E_k \neq a_i + b_j \) (i.e., operand versions changed but we did not find a new version for \(E \)) then
 - Get new version (say \(m \))
 - \(\text{stack}(E).\text{push}(m) \)
 - Use version \(m \) for \(E \)
\begin{align*}
 E_k & = a_i + b_j \\
 a_c & = b_j \quad \text{for } B \\
 \overline{B} & \text{ dom } B \\
 \overline{B} & \text{ dom } B' \\
 \text{Stack}[a] &= \langle \ldots, i \rangle \\
 \text{Stack}[b] &= \langle \ldots, j \rangle \\
 \text{Stack}[E] &= \langle \ldots, k \rangle \\
 k & = \text{top}(\text{Stack}[E]) \\
 i & = \text{top}(\text{Stack}[a]) \\
 j & = \text{top}(\text{Stack}[b]) \\
 \text{top}(\text{Stack}(E)) & = E_k \equiv (a_i + b_j)
\end{align*}
Example

\[a_1 = \ldots \]
\[b_1 = \ldots \]
\[E_2 = a_1 + b_1 \]

\[E = a_1 + b_1 \]

\[a_2 = \ldots \]
\[E = a_2 + b_1 \]