263-2810: Advanced Compiler Design

6.0 Partial redundancy elimination

Thomas R. Gross

Computer Science Department
ETH Zurich, Switzerland
Outline

PRE with SSA in five (easy) steps

- Assumption: Program in SSA form for scalar variables

1. Insert Φ functions for expressions
 - (Introduce “temporary” to isolate expression
 \[x = a_1 + b_1 \rightarrow E = a_1 + b_1 \]
 \[x = E \]
 - Identify places where different versions merge

2. Identify/set version numbers for expressions
 - Expressions on LHS: set version number
 - Operands of functions: find correct version
3. **Identify places where is is *legal* to insert a copy of an expression**
 - “legal” is defined later

4. **Find places where the insertion on a copy is *profitable***
 - Only places that are legal can be considered
 - Expect removal of operations
 - Expect reduction in cycles
 - Metrics for profitability to be discussed

5. **Exploit full redundancy of expressions**
 - Transform program to reuse computed values
6.4 Version numbers for expressions

- If E appears on the LHS: decide if a new version is needed or if the current version should be used
 - “current”: Version computed in a dominating node and no operand has been redefined
- For the operands of a Φ function:
 - Identify correct version
Recall: for functions (for scalars) we used a stack of versions

- Array \mathcal{V} of stacks, with \mathcal{V} the set of all variables

For \mathcal{E}, the set of all expressions of interest in the program

- stack[\mathcal{E}]: one stack for each expression
- $E \in \mathcal{E}$: stack[E] is a stack of versions (integers)

Given an expression $E = a + b$, after turning program into SSA for scalars, versions of a and b are known

- $E = a_i + b_j$

If we have processed $E = a_i + b_j$ before (with these versions of a, b) then we use the version k of E on top of stack[E]

- $E_k = a_i + b_j$
- a_i, b_j must be current versions of a, b
- Must be the current version of E
So use version \(k \) of \(E \) if

- \(\text{stack}(a).\text{top} = i \)
- \(\text{stack}(b).\text{top} = j \)
- and \(\text{stack}(E) = k \) with \(E_k = a_i + b_j \)
If \(E = a_i + b_j \) has not been processed before, i.e.,

- \(\text{stack}(a).top = i \)
- \(\text{stack}(b).top = j \)
- and \(\text{stack}(E) = k \) with \(E_k \neq a_i + b_j \) (i.e., operand versions changed but we do not find a new version for \(E \)) then
 - Get new version (say \(m \))
 - \(\text{stack}(E).push(m) \)
 - Use version \(m \) of \(E \): \(E_m \)
Example

\[
\begin{align*}
a_1 &= \ldots \hfill \text{B''} \\
b_1 &= \ldots \\
E_2 &= a_1 + b_1
\end{align*}
\]

\[
\begin{align*}
E &= a_1 + b_1 \\
\quad &\downarrow \\
\quad &\downarrow \\
a_2 &= \ldots \\
E &= a_2 + b_1 \hfill \text{B'}
\end{align*}
\]
Example

\[E_2 = a_1 + b_1 \]

\[a_1 = \ldots \]
\[b_1 = \ldots \]
\[\overline{E_2} = a_1 + b_1 \]

\[a_2 = \ldots \]
\[\overline{E_4} = a_2 + b_1 \]

\[f = \Phi (E_2, E_4) \]

\[a + 5 \]
Operands of Φ function

- **Visit nodes in depth-first order**
 - Use dominator tree
 - Like when handling ϕ functions

- **After processing a block (node), record expression version for Φ function(s) in successor blocks that are not dominated**
 - Make sure argument to Φ function reflects expression set along corresponding path
Example

\[a_1 = \ldots \]
\[b_1 = \ldots \]

\[a_2 = \phi(a_4, a_1) \]

\[E = a_2 + b_1 \]
\[a_3 = \ldots \]

\[a_4 = \phi(a_2, a_3) \]

\[E = a_4 + b_1 \]

EXIT
Example

$E_2 = \frac{\perp}{a_4}$

$E_4 = a_2 + b_1$

$E_5 = a_4 + b_1$
6.5 Are copies legal at point P?

- Given a program in SSA format with ϕ and Φ functions
- Versions of scalars and expressions have been determined

- Given a basic block, P point at the start of block.
 A Φ function for E at point P with (one or more) \perp operands indicates that
 - Value of expression E is undefined if control reaches P along path that corresponds to \perp operand
 - Expression E is defined if control reaches P along a path that corresponds to version E_k of E

- Predecessor basic block that corresponds to \perp operand is a candidate to place a copy of E
Example

\[a_1 = \ldots \]
\[b_1 = \ldots \]

\[E_1 = a_1 + b_1 \]

\[E_2 = \Phi(\bot, E_1) \]

\[= E_2 \]

EXIT
A copy of E can be inserted into B
 - Or any of its predecessors
 - (As long as operands of E are available)

Is inserting a copy acceptable?
- A copy of E can be inserted into B
 - Or any of its predecessors
 - (As long as operands of E are available)

- Is inserting a copy (into B) legal?

- “Gold standard”: insertion of a copy must not change the program (results)
Detour: “must not change the program”

- Given program P, transformed program $T(P) = P'$
- Transformation is legal if
 - P computes the same result as P'
 - Same output
 - Returns no new errors
 - Throws no new exceptions
 - Termination behavior unchanged
- Allow that P encounters an error earlier or later
- Allow that P throws an exception earlier or later
- Note: values stored in memory by P may differ from values stored by P'
 - May accept that values after error/exception differ
Example

\[a_1 = \ldots \]
\[b_1 = \ldots \]

\[E_1 = a_1 + b_1 \]

\[E_2 = \Phi (\bot, E_1) \]

\[= E_2 \]

EXIT
Example

\[a_1 = \ldots \]
\[b_1 = \ldots \]

\[E_1 = a_1 + b_1 \]

\[E_2 = \Phi (\perp, E_1) \]

\[a_2 = \ldots \]
\[E_3 = a_2 + b_1 \]

EXIT
Legal copies

- Could we insert a copy of E into B?
Legal copies

- Could we insert a copy of E into B?

- We do not know anything about the effect of E.
 - Might throw an exception
 - Might raise an error (overflow, memory protection error, ...)

- A copy of E can be inserted into B if E is evaluated along all paths from B to EXIT
Example

\[a_1 = \ldots \]
\[b_1 = \ldots \]

\[E_1 = a_1 + b_1 \]

\[E_2 = \Phi(\bot, E_1) \]

\[a_2 = \ldots \]
\[E_3 = a_2 + b_1 \]
- Our model of legality: insert into B only if there is a copy of E on all paths from B to EXIT
 - Blocks with this property are called “downsafe”
 - Earlier papers use the phrase “E anticipated in B”

- Insertion legal: iff B is downsafe
Downsafety

- Check if there is a path from B to EXIT that does not include E
- If E occurs only as the operand to a Φ function in block B'. Check that E is used in B' or B' is downsafe.

We say a Φ function in block B' is downsafe if E appears on the RHS of a statement in B' or B' is downsafe.

- Can insert copies for Φ functions that are downsafe
Downsafety

- Need to check that along all paths from B to EXIT there is a *real* occurrence of E or a downsafe Φ function

- **Simple algorithm:**
 - Start at EXIT
 - Visit recursively all predecessor nodes, until all nodes have been visited
 - Mark a Φ function as downsafe iff a real occurrence or a downsafe Φ function appears on all paths to EXIT
 - After visiting all nodes: downsafe Φ functions are marked

- **Downsafety is a necessary condition**
Example

\[E_2 = \Phi(E_1, \perp) \]

\[E_3 = \Phi(E_2, \perp) \]

\[= E_1 \]

\[= E_2 \]

\[= E_3 \]

EXIT
Example

\[E_2 = \Phi(E_1, \bot) \]

\[E_3 = \Phi(E_2, \bot) \]

\[E_1 \]

\[E_2 \]

\[E_3 \]

EXIT

Note: A red cross indicates not a place for a copy.